Non-autonomous maximal regularity for fractional evolution equations

نویسندگان

چکیده

We consider the problem of maximal regularity for semilinear non-autonomous fractional equations $$\begin{aligned} B^\alpha u(t)+A(t)u(t)=F(t,u),\, t \text {-a.e}. \end{aligned}$$ Here $$B^\alpha $$ denotes Riemann–Liouville derivative order $$\alpha \in (0,1)$$ w.r.t. time and time- dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space $${\mathcal {H}}.$$ prove $$L^p$$ -regularity results other properties solution above equation under minimal assumptions inhomogeneous term F.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Regularity for Evolution Equations Governed by Non-Autonomous Forms

We consider a non-autonomous evolutionary problem u̇(t) + A(t)u(t) = f(t), u(0) = u0 where the operator A(t) : V → V ′ is associated with a form a(t, ., .) : V × V → R and u0 ∈ V . Our main concern is to prove well-posedness with maximal regularity which means the following. Given a Hilbert space H such that V is continuously and densely embedded into H and given f ∈ L(0, T ;H) we are interested...

متن کامل

Maximal Lp-Regularity for Stochastic Evolution Equations

We prove maximal L-regularity for the stochastic evolution equation

متن کامل

Maximal regularity for nonautonomous evolution equations

We derive sufficient conditions, perturbation theorems in particular, for nonautonomous evolution equations to possess the property of maximal Lp regularity. 1991 Mathematics Subject Classification. 35K90, 47D06.

متن کامل

Maximal L-regularity for Stochastic Evolution Equations

We prove maximal Lp-regularity for the stochastic evolution equation{ dU(t) +AU(t) dt = F (t, U(t)) dt+B(t, U(t)) dWH(t), t ∈ [0, T ], U(0) = u0, under the assumption that A is a sectorial operator with a bounded H∞calculus of angle less than 1 2 π on a space Lq(O, μ). The driving process WH is a cylindrical Brownian motion in an abstract Hilbert space H. For p ∈ (2,∞) and q ∈ [2,∞) and initial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Evolution Equations

سال: 2022

ISSN: ['1424-3199', '1424-3202']

DOI: https://doi.org/10.1007/s00028-022-00808-4